mardi 8 mai 2018

Transformée de Fourier de sech

Les cas où on peut calculer exactement la transformation de Fourier d'une fonction ne sont pas fréquents, quand on fait le tour des ressources disponibles sur le net on se rend compte qu'on retombe toujours sur les mêmes exemples : fonction porte, Gaussienne, Lorentzienne ... alors pour sortir  un peu de l'ordinaire voici le calcul de la transformée de Fourier de la fonction ${\rm sech}(x)= {1\over \cosh(x)}$ :
$$ \widehat{\rm sech}(\xi)=\int_{-\infty}^{+\infty}  e^{-ix\xi} {1\over \cosh(x)}dx=\pi \,{\rm sech}\left({\pi\xi\over 2}\right)~~~~(1)$$

Pour commencer il faut remarquer que la fonction ${\rm sech}(x)$ est $C^\infty({\mathbb R})$ et à décroissance rapide puisque :
$${\rm sech}(x)\sim_{\pm\infty} {e^{-\vert x\vert }\over 2}$$
sa transformée de Fourier est donc bien définie au sens des fonctions de la classe de Schwarz ${\mathcal S}({\mathbb R})$ avec l'intégrale $(1)$. La manière la plus simple de calculer cette transformée de Fourier repose sur l'utilisation du théorème des résidu, ce qui explique peut être que ce résultat ne soit pas très populaire  dans les cours d'analyse de Fourier qui sont souvent séparés des cours d'analyse complexe! Petit rappel sur le théorème des résidus :



Théorème des résidus: Soient $U$ un ouvert  simplement connexe de $\mathbb C$ ,  $F$ une fonction holomorphe sur $U\setminus\{z_1,\dots, z_n\}$ et $\Omega\subset U$  un ouvert tel que $\gamma=\partial \Omega$ soit un lacet simple  $C^1$ par morceau ne passant par aucun des points  $z_k$  alors
$$\oint_\gamma F(z) dz = 2i\pi\sum_{z_k\in\Omega} {\rm res}(F,z_k)$$
où ${\rm res}(F,z_k)=a_{-1}$ dans le développement de Laurent $F(z)=\sum_{p\in{\mathbb Z}}a_p (z-z_k)^p$


Ici on va donc poser
$$ F(z)=e^{-iz\xi} {1\over \cosh(z)}=e^{-iz\xi} {2\over e^z + e^{-z}}=e^{-iz\xi} {2e^z\over  e^{2z}+1}$$
cette fonction est clairement analytique  sauf aux points où son dénominateur s'annule :
$$e^{2z}+1=0\Leftrightarrow e^{2z}=-1=e^{i\pi}\Leftrightarrow {z}=(2k+1)i{\pi\over 2},~~ k\in{\mathbb Z}$$
on va intégrer $F(z)$  sur un contour encerclant le pôle $z_0=i{\pi\over 2}$ composé de quatre segments
$$\gamma=[-R,R]\cup [R,R+i\pi]\cup [-R+i\pi,R+i\pi]\cup [-R+i\pi,-R]=\gamma_1\cup\gamma_2\cup\gamma_3\cup\gamma_4$$
et orienté dans le sens direct. 


En utilisant le DSE usuel de $e^x$  avec $x=2z$ et en $z_0=i{\pi\over 2}$
$$e^{2z}=\sum_{p\in{\mathbb Z}}2^pe^{2z_0}(z-z_0)^p=\sum_{p\in{\mathbb Z}}-2^p(z-z_0)^p
\Rightarrow e^{2z}+1=-2(z-z_0)+\dots$$
on en déduit le  développement en série de Laurent de $F$ (ou au moins les premiers termes) :
$$F(z)=e^{-iz\xi} {2e^z\over  e^{2z}+1}= e^{-iz_0\xi} {2e^{z_0}\over -2(z-z_0)}+\sum_{p\geq 0}a_p(z-z_0)^p$$
ce qui donne le résidu de $F$ en $z_0$ :  
$${\rm res}(F,z_0)=e^{-iz_0\xi} {2e^{z_0}\over -2}=e^{\pi\xi\over 2} {2e^{i\pi\over 2}\over -2}=-ie^{\pi\xi\over 2}$$
on peut maintenant appliquer le théorème des résidus le long de $\gamma$ pour obtenir que :
$$\oint_\gamma F(z) dz = 2\pi e^{\pi\xi\over 2}$$
il reste à calculer $\oint_\gamma$ et à faire tendre $R\to\infty$ en décomposant le calcul intervalle par intervalle :
sur $\gamma_1$ on a tout simplement :
$$\int_{\gamma_1} F(z) dz =\int_{-R}^{+R}  e^{-ix\xi} {1\over \cosh(x)}dx\mathop{\longrightarrow}_{R\to\infty}\widehat{\rm sech}(\xi)$$
sur $\gamma_3$ on a $z=x+i\pi$ donc :
$$\cosh(x+i\pi)={e^{x+i\pi}+e^{-x-i\pi}\over 2}={e^{x} e^{i\pi}+e^{-x}e^{-i\pi}\over 2}=-\cosh(x)$$
comme pour $\gamma_1 $ on trouve
$$\int_{\gamma_3} F(z) dz =\int_{R}^{-R}  e^{-ix\xi+\pi\xi} {1\over -\cosh(x)}dx\mathop{\longrightarrow}_{R\to\infty}  e^{\pi\xi}\widehat{\rm sech}(\xi)$$
sur les segments $\gamma_2$ et $\gamma_4$ on a $z=\pm R+it$ donc :
$$\vert F(\pm R+it)\vert = e^{t\xi} {2\over  \vert e^{R\pm it}+e^{-R\mp it}\vert}\leq   2{e^{t\xi}\over  e^{R}}\mathop{\longrightarrow}_{R\to\infty}0$$
on en déduit que pour $j=2$ et $4$ que
$$\left\vert \int_{\gamma_j}F(z) dz\right\vert\leq \int_0^\pi 2{e^{t\xi}\over  e^{R}}dt\leq 2\pi {e^{\pi\xi}\over  e^{R}}\mathop{\longrightarrow}_{R\to\infty}0$$
au final en faisant tendre $R\to\infty$ on obtient :
$$\oint_\gamma F(z) dz\mathop{\longrightarrow}_{R\to\infty} \left(1+e^{\pi\xi}\right)\widehat{\rm sech}(\xi)+0 = 2\pi e^{\pi\xi\over 2}$$
il ne reste plus qu'à simplifier :
$$\widehat{\rm sech}(\xi) = {2\pi e^{\pi\xi\over 2}\over 1+e^{\pi\xi}}= {2\pi \over e^{\pi\xi\over 2}+e^{-{\pi\xi\over 2}}}=\pi\, {\rm sech}\left({\pi\xi\over 2}\right)$$
On remarquera aussi que en utilisant la formule de changement d'échelle
$${\mathcal F}(f(ax))(\xi)={1\over a}\widehat{f}\left({\xi\over a}\right)$$
avec $a=\sqrt{\pi\over 2}$ on obtient  que la fonction $f(x)={\rm sech}\left(\sqrt{\pi\over 2}x\right)$ vérifie $\widehat{f}(\xi)=\sqrt{2\pi}f(\xi)$  comme la fonction Gaussienne $\exp(-x^2/2)$ ...

1 commentaire:

Pour écrire des formules mathématiques vous pouvez utiliser la syntaxe latex en mettant vos formules entre des "dollars" $ \$....\$ $ par exemple :
- $\sum_{n=1}^\infty {1\over n^2}={\pi^2\over 6}$ s'obtient avec \sum_{n=1}^\infty {1\over n^2}={\pi^2\over 6}
- $\mathbb R$ s'obtient avec {\mathbb R} et $\mathcal D$ s'obtient avec {\mathcal D}
- pour les crochets $\langle .,. \rangle$ dans les commentaires utilisez \langle .,. \rangle
vous pouvez écrire du html dans les commentaires :
- italique <i> ... </i> gras <b> ... </b>
- lien <a href="http://adresse "> .... </a>